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Abstract

We have developed a numerical simulation scheme for three-dimensional magnetohydrodynamical flow with shocks.
The numerical scheme is based on the Roe-type scheme and includes additional numerical diffusion in the direction tan-
gential to the shock front to care the carbuncle instability. The numerical viscosity is added only in the regions where the
characteristics of either fast or slow wave converges, i.e., in the regions potentially dangerous to the carbuncle instability.
Accordingly the numerical viscosity is as small as that of the Roe scheme except near the shock fronts. It is demonstrated
from comparison with the HLLE scheme that the magnetic Reynolds number is higher in the simulations obtained with
our scheme. We show application of the scheme to the magnetohydrodynamical simulations of type II supernova. It is also
proved that the scheme is free from the odd–even decoupling.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The carbuncle instability is notorious by serious damages to shock waves. It produces unphysical bumps
near shock fronts in multi-dimensional hydrodynamical simulations. Since the discovery of the carbuncle phe-
nomenon by Peery and Imlay [1], many schemes have been examined. Shock capturing schemes such as Roe’s
[2] flux difference splitting (FDS) scheme suffer from the carbuncle instability seriously. A less diffusive scheme
is sensitive to the carbuncle instability as pointed out by Quirk [3]. The carbuncle instability is so complex that
the emergence depends not only on evaluation of numerical flux but also on many factors including initial
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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condition (see, e.g., [4]). Since the mechanism of carbuncle instability has not been fully understood yet, pro-
posed cures are derived either phenomenologically or heuristically. No scheme has been proved to be free from
the carbuncle instability.

In practical simulations we choose a scheme by considering both artificial diffusion due to numerical vis-
cosity and vulnerability to the carbuncle instability. A sensible scheme should be less diffusive and free from
the carbuncle instability. However, no good choice has bee known for solving the magnetohydrodynamical
(MHD) equations. Although HLLE [5,6] is less sensitive to the carbuncle instability, the numerical viscosity
is large. Most of the known cures are designed for solving the hydrodynamical equations and cannot be
directly applied to MHD.

In this paper we propose a numerical scheme for the MHD equations. The scheme provides a carbuncle free
solution while the numerical viscosity is smaller than that of HLLE. Our approach is similar to those of Wada
and Liou [7] and of Kim et al. [8] and based on the Quirk’s [3] strategy. First we identify the shock fronts since
the nearby regions are potentially dangerous to the carbuncle instability. The identification is based on the
spatial variation of the characteristics and is similar to that by Wada and Liou [7]. We supplement additional
numerical viscosity to the Roe-type scheme there. The additional viscosity diffuses disturbances in the direc-
tions tangential to the shock fronts. As well as Liou [9], we use the spatial distribution of characteristic speed
to design the additional viscosity. It is designed to be larger where the shock is stronger.

This paper is organized as follows. Section 2 describes the scheme and Section 3 shows its application to
the odd–even decoupling problem. Section 4 shows application to type II supernova in which expanding
spherical shock waves and bipolar outflows emerge. Section 5 discusses the validity of our numerical
viscosity.

2. Numerical scheme

2.1. Basic equations

We consider the ideal magnetohydrodynamical (MHD) equations in the Cartesian coordinates. They are
expressed as
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The symbols, q and P, denote the density and pressure. The vectors, v ¼ ðvx; vy ; vzÞ and B ¼ ðBx;By ;BzÞ, denote
the velocity and magnetic field, respectively. The symbols, E and H, denote the specific energy and specific
enthalpy, respectively. The symbol, e, denotes the specific internal energy.

The characteristics of the MHD equations are evaluated from the Jacobi matrices, ðoFx=oUÞ, ðoFy=oUÞ,
and ðoFz=oUÞ as shown by Brio and Wu [10]. The characteristic speeds propagating in the x-direction are
expressed as
kð1Þx ¼ vx þ cf ;x; ð6Þ

kð2Þx ¼ vx þ bx; ð7Þ

kð3Þx ¼ vx þ cs;x; ð8Þ
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kð5Þx ¼ vx � cs;x; ð10Þ
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The symbols, a, denotes the adiabatic sound speed. The symbols, cf ;x and cs;x, denote the phase velocities of the
fast and slow magnetohydrodynamical waves, respectively. The symbols, bx, by , and bz, denote the Alfvén
speeds in the x-, y-, and z-directions, respectively. The characteristic speeds are numbered in the decreasing
order so that,
kðkÞx P kðkþ1Þ
x ð20Þ
for any k.
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2.2. Identification of the shock front

Carbuncle instability takes place only in the regions close to shock fronts. The shock fronts are identified by
the pressure difference between adjacent cells in Kim et al. [8]. The pressure difference is indeed a good measure
of the shock strength in hydrodynamics. However, it may not be in magnetohydrodynamics (MHD), since
magnetic force may dominate over the pressure force. Alternatively, we select regions potentially dangerous
to the carbuncle instability from the spatial change in the characteristic speed according to Wada and Liou
[7]. They identified the shock front from the change in the characteristic speed of sound waves. MHD flows
contain four types of waves, the fast, slow, Alfvén and entropy waves, which propagate at the characteristic
speeds. The former two steepen and evolve into shock waves. Thus we measure steepening of them by the fol-
lowing procedures.

First we compute the characteristic speeds of MHD waves propagating in the x-direction at each cell. They
are numbered in the decreasing order as
kð1Þx;i;j;k ¼ vx;i;j;k þ cf ;i;j;k; ð21Þ
kð2Þx;i;j;k ¼ vx;i;j;k þ bx;i;j;k; ð22Þ
kð3Þx;i;j;k ¼ vx;i;j;k þ cs;i;j;k; ð23Þ
kð4Þx;i;j;k ¼ vx;i;j;k; ð24Þ
kð5Þx;i;j;k ¼ vx;i;j;k � cs;i;j;k; ð25Þ
kð6Þx;i;j;k ¼ vx;i;j;k � bx;i;j;k; ð26Þ
kð7Þx;i;j;k ¼ vx;i;j;k � cf ;i;j;k: ð27Þ
where the subscripts, i, j, and k denote the cell position in the x-, y-, and z-directions, respectively. The max-
imum characteristic speed, kð1Þx;i;j;k, denotes the characteristic speed of the fast wave propagating rightward in
the x-direction, while the minimum one, kð7Þx;i;j;k, does that propagating leftward. When and only when
kð1Þx;i;j;k > kð1Þx;iþ1;j;k, the fast wave propagating rightward steepens and will evolve into the shock wave eventually.
Similarly the fast wave propagating leftward steepens when and only when kð7Þx;i;j;k > kð7Þx;iþ1;j;k. Thus the spatial
difference in the characteristic speed denotes rate of wave compression and gives us a measure of wave steep-
ening. Similarly when and only when kð3Þx;i;j;k > kð3Þx;iþ1;j;k or kð5Þx;i;j;k > kð5Þx;iþ1;j;k, the slow waves evolve into the shock
waves. In short, the spatial difference in the characteristic speed is an indicator for shock wave. For later con-
venience, we define the index,
Dkx;iþ1=2;j;k � maxðDkð1Þx;iþ1=2;j;k;Dkð3Þx;iþ1=2;j;k;Dkð5Þx;iþ1=2;j;k;Dkð7Þx;iþ1=2;j;kÞ; ð28Þ
where
Dkð1Þx;iþ1=2;j;k ¼ maxðkð1Þx;i;j;k � kð1Þx;iþ1;j;k; 0Þ; ð29Þ

Dkð3Þx;iþ1=2;j;k ¼ maxðkð3Þx;i;j;k � kð3Þx;iþ1;j;k; 0Þ; ð30Þ

Dkð5Þx;iþ1=2;j;k ¼ maxðkð5Þx;i;j;k � kð5Þx;iþ1;j;k; 0Þ; ð31Þ

Dkð7Þx;iþ1=2;j;k ¼ maxðkð7Þx;i;j;k � kð7Þx;iþ1;j;k; 0Þ: ð32Þ
When the index, Dkx;iþ1=2;j;k, is positive and large, the cell surface is close to the shock front. The shock is stron-
ger when the index is larger.

When Dkx;iþ1=2;j;k is positive, the cells, ði; j; kÞ and ðiþ 1; j; kÞ, may suffer from the carbuncle instability. Thus
we need supplement numerical viscosity to the fluxes flowing through the cell surfaces, ði; j� 1=2; kÞ,
ði; jþ 1=2; kÞ, ðiþ 1; j� 1=2; kÞ, ðiþ 1; jþ 1=2; kÞ, ði; j; k � 1=2Þ, ði; j; k þ 1=2Þ, ðiþ 1; j; k � 1=2Þ, and
ðiþ 1; j; k þ 1=2Þ in order to avoid the carbuncle instability [8,9].

The argument mentioned above is illustrated in Fig. 1, in which the lines denote the cell surfaces in the two
dimension. When the cell surface denoted by the solid line has a positive index, Dkx;iþ1=2;j;k, the cells marked D
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Fig. 1. The cells marked D are potentially dangerous to the carbuncle instability, when the index is positive on the cell surface denoted by
the thick solid line. An additional numerical viscosity is added to the fluxes on the cell surfaces denoted by the dashed lines.
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are potentially dangerous to the carbuncle instability. The carbuncle instability will be erased out by diffusion
if numerical viscosity is enhanced for the cell surfaces denoted by the dashed lines.

2.3. Numerical viscosity

First we examine the numerical viscosity of the original Roe scheme. In the original Roe scheme, the first
order accurate solution is expressed as
U
ðnþ1Þ
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where F
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ðROEÞ
z;i;j;k�1=2 denote the numerical fluxes evaluated at the cell surfaces normal to

the x-, y- and z-directions, respectively. The subscripts specify the cells and surfaces in which the conservative
variable and numerical flux are evaluated. The numerical flux is expressed as
F
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� 1

2
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where dwm and rm denote the mth wave amplitude and eigen vector, respectively. They are chosen to satisfy the
property U so that both
U jþ1 �U j ¼
X7

m¼1

dwmrm; ð35Þ
and
Fx;jþ1 � Fx;j ¼
X7

m¼1

kðmÞx;iþ1=2;j;kdwmrm; ð36Þ
hold simultaneously. The explicit form of kðmÞ, rm, and dwm was obtained by Cargo and Gallice [11] for the
ideal gas having a constant specific heat ratio. It is extended for a non-ideal gas by Hanawa et al. [12].

We can evaluate the numerical viscosity of the Roe scheme from Eq. (34). The second term in the right
hand side denotes the diffusive flux. The dynamical viscosity is jkðmÞx;iþ1=2;j;kjDx for the mth wave. If we replace
j kðmÞx;iþ1=2;j;k j with a lager one, then we obtain a more diffusive numerical flux.

We employ a larger numerical viscosity to avoid both the expansion shock and carbuncle instability. The
former is removed by employing the entropy fix to the fast and slow waves. We replace jkðmÞx;iþ1=2;j;kj in the right
hand side of Eq. (34) with the maximum of jkðmÞx;i;j;kj and jkðmÞx;iþ1;j;kj for m ¼ 1; 3; 5, and 7 when km

x;i;j;k < 0 and
km

x;iþ1;j;k > 0 simultaneously.
Our care for the carbuncle instability is designed with the following observations on HLLE scheme in mind.

The simple version of HLLE takes account of only maximum and minimum characteristic speeds. It seems to
be resistant to the carbuncle although it suffers from 1D carbuncle instability [4]. This suggests two things; (1)
we need not employ a viscosity larger than that of HLLE scheme and (2) no additional numerical viscosity is
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likely to be necessary for the fast waves. The index, Dkx;iþ1=2;j;k, has the dimension of velocity and is a reason-
able candidate for the numerical viscosity for the Alfvén and slow waves. The entropy wave is the most
sensitive to the carbuncle instability as pointed out by Liou [9]. Thus the numerical viscosity should be larger
for the entropy wave.

On the basis of the above argument, we propose a numerical flux defined as
F�x;iþ1=2;j;k ¼
Fx;i;j;k þ Fx;iþ1;j;k

2
� 1

2

XN

k¼1

KðmÞx;iþ1=2;j;kdwmrm; ð37Þ
where KðmÞ denotes the numerical viscosity in the unit of velocity. It is taken to be
KðmÞx;iþ1=2;j;k ¼j k
ðmÞ
x;iþ1=2;j;k j ð38Þ
for the fast wave (m ¼ 1 and 7). In other words, no additional numerical viscosity is supplemented to the Roe
flux. It is taken to be
KðmÞx;iþ1=2;j;k ¼ maxðj kðmÞx;iþ1=2;j;k j;D~kx;iþ1=2;j;kÞ; ð39Þ

D~kx;iþ1=2;j;k � maxðDky;i;j�1=2;k;Dky;i;jþ1=2;k;Dky;iþ1;j�1=2;k;Dky;iþ1;jþ1=2;k;Dkz;i;j;k�1=2;Dkz;i;j;kþ1=2;

Dkz;iþ1;j;k�1=2;Dkz;iþ1;j;kþ1=2Þ ð40Þ
for the Alfvén (m ¼ 2 and 6) and slow (m ¼ 3 and 5) waves so that the numerical viscosity is increased accord-
ing to the shock indicator. For the entropy wave ðm ¼ 4Þ, the numerical viscosity is set equal to that of HLLE,
Kð4Þx;iþ1=2;j;k ¼ ðk
ð1Þ
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�1jðkð1Þx;iþ1=2;j;k þ kð7Þx;iþ1=2;j;kÞk
ð4Þ
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ð7Þ
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in the regions where Dkx;iþ1=2;j;k > 0. It is set equal to that in the Roe flux,
Kð4Þx;iþ1=2;j;k ¼j k
ð4Þ
x;iþ1=2;j;k j; ð42Þ
in the rest regions, where Dkx;iþ1=2;j;k ¼ 0 [see, Eqs. (29)–(32)]. Note that Eq. (40) cares all the cases in which
either the cell ði; j; kÞ or ðiþ 1; j; kÞ may suffer from the carbuncle instability.

Eq. (39) means that the wave propagation speed, j kðmÞx;iþ1=2;j;k j, is the threshold for the numerical viscosity in
the sense that the numerical viscosity is increased only when the shock indicator exceeds the threshold. On the
other hand, Eq. (42) sets no threshold for the viscosity applied to the entropy wave. This means that the
numerical viscosity is supplemented even if wave steepening is very weak and the region is unlikely to be vul-
nerable to the carbuncle instability. The overabundant numerical viscosity may be suppressed by setting an
appropriate threshold, although we have not yet investigated the possibility.

Similarly we can obtain the numerical flux, Fy;i;jþ1=2;k and Fz;i;j;kþ1=2. With these modified numerical flux, we
obtain the first order accurate solution,
U
ðnþ1Þ
i;j;k ¼ U

ðnÞ
i;j;k � Dt �

F�x;iþ1=2;j;k � F�x;i�1=2;j;k
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�
þ

F�y;i;jþ1=2;k � F�y;i;jþ1=2;k

Dy
þ

F�z;i;j;kþ1=2 � F�z;i;j;k�1=2

Dz

�
: ð43Þ
The numerical flux given by Eq. (37) is of the first order accurate in space. The second order accurate solution
is obtained with the aid of MUSCL (Monotone Upstream-centered Schemes for Conservation Law, see e.g.,
Hirsch [13]). The examples shown in the subsequent sections are second order accurate both in space and in
time.

Since we evaluate all the physical quantities at the cell center, the solution has $ � B of numerical origin. We
employed the method of Balsara [14] and Balsara and Spicer [15] to clean the numerical monopole each step.
Thus the solution is free from spurious $ � B.

3. Test problems

In this section we show two test computations. The first one is collision of expanding gas sphere and radial
inflow, while the second one is the zigzagged shock wave. The former example is purely hydrodynamical and
contains no magnetic fields. The solution is, however, obtained with the MHD code.
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3.1. Spherical expansion

In this subsection we examine collision of an expanding gas sphere with radial inflow, i.e., a spherical explosion
in an accreting flow. In this example, a strong spherical shock wave forms and propagates outward. This example
is computed with the uniform grid having 1283 cells. The initial density is q ¼ 16 inside a unit sphere while it is
q ¼ 1:4 outside the sphere. The initial pressure is P ¼ 20 inside the sphere and P ¼ 0:2 outside the sphere, respec-
tively. The initial radial velocity is vr ¼ �2:25 outside the sphere, while it is proportional to the radial distance
from the center inside the sphere, and vr ¼ r. The cell width is taken to be Dx ¼ 3:356� 10�2. The initial condi-
tion is shown in Fig. 2 as a function of the radial distance from the center of the computation region.

When we follow the evolution with the Roe scheme, the simulation suffers from the carbuncle instability. Fig. 3
shows the stage 260 time steps after the initial. The contours denote the entropy, s � ln P � ð5=3Þ ln q, on the cross
section of the mid ðz ¼ 0Þ plane. The lower panel is the enlargement of the upper one around the carbuncle.

Fig. 4 is the same as Fig. 3 but for the solution obtained with the modified numerical flux. The carbuncle
has been removed as expected, although we can see irregularities in the contours. The irregularities result from
using a cubical grid for a spherical problem. The initial radius is only 29.8 times larger than the cell width for
the expanding sphere. The boundary between the expanding sphere and accreting flow depends on the reso-
lution; a small change in the resolution results in appreciable changes in the shape of contours.

Next we examine the additional viscosity of the modified numerical flux. The fast mode, which is identical
to the sound wave in this example, has no additional viscosity. The slow mode vanishes since the magnetic
field vanishes. Thus, the additional numerical viscosity is supplemented only to the Alfvén wave (velocity
shear) and entropy wave. Fig. 5 shows the additional numerical viscosity supplemented to the Alfvén wave,
Kð2Þ � kð2Þ. The upper panel denotes that for the shear (Alfvén) wave propagating rightward in the x-direction
by darkness, while the lower panel denotes that propagating rightward in the z-direction. They are evaluated
on the mid plane of z ¼ 0. The grey scale for the darkness is given on the top of the upper panel. The addi-
tional numerical viscosity is large around the two shock waves, one of which propagates outwards and the
other of which does inwards. The viscosity is larger around the former shock wave, since it is stronger.

The amount of the additional numerical viscosity is also shown in Fig. 6. The ordinate is given in the unit of
velocity. The ordinary numerical viscosity is the characteristic speed and hence of the order of flow velocity
and sound speed. Since the expansion velocity is of the order of unity, the additional numerical viscosity is
much lower than the ordinary numerical viscosity except near the shock fronts.

3.2. Odd–even test

We computed Quirk’s [3] odd–even problem as a litmus test for the carbuncle instability with our 3D MHD
code. The coordinates are chosen so that the shock front is normal to the x-direction and the wave number of
the initial perturbation is parallel to the y-direction. Everything is constant in the z-direction at the initial state.
0.0 0.5 1.0 1.5 2.0
r

-2

-1

0

1

2

log ρ

log P

v r

Fig. 2. Initial density, velocity, and pressure are shown as a function of the radius, r, for the spherical expansion test. The density and
pressure are shown in the logarithmic scale while the velocity in the linear scale.
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Fig. 3. Spherical expansion test solution without additional viscosity. The contours denote, s ¼ ln P � ð5=3Þ ln q with the interval of
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The gas is assumed to be an ideal mono atomic one ðc ¼ 5=3Þ in this test. The right hand side is the preshocked
flow while the left hand side is the postshocked one. We made 6 models by changing the initial condition.

The shock front moves at the speed of vsh ¼ 1:0 in the first 5 models. The strength of initial magnetic field is
the main difference between them. The magnetic field is assumed to vanish in the first problem, while it is par-
allel to the flow, i.e., the x-direction in the second problem. The magnetic field is assumed to be perpendicular
to the flow in the rest three problems.

In the first problem, the initial state is set to be state is set to be
qi;j;k ¼ 1:0; ð44Þ
P i;j;k ¼ 0:6; ð45Þ
vx;i;j;k ¼ �5:0; ð46Þ
vy;i;j;k ¼ 0:0; ð47Þ
vz;i;j;k ¼ 0:0; ð48Þ
in the right hand side of ði P 30Þ, where i, j, and k denote the cell position in the x-, y-, and z-directions,
respectively. It is set to be
qi;j;k ¼ 3:692; ð49Þ
P i;j;k ¼ 26:85; ð50Þ
vx;i;j;k ¼ �0:625; ð51Þ
vy;i;j;k ¼ 0:0; ð52Þ
vz;i;j;k ¼ 0:0; ð53Þ
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Fig. 4. The same as Fig. 3 but for the solution with the additional viscosity.
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in the left hand side of i 6 29. These states are arranged so that the boundary moves rightward at the phase
velocity of 1.0 while keeping the initial density, velocity, and pressure. The shock Mach number is 6.0 in the
preshocked (right) flow since the sound velocity is unity.

A small perturbation of ðDq;DP ;DvxÞ ¼ ð�0:135;�1:31; 0:219Þ is added on the cells of an even j and i ¼ 29.
This small perturbation corresponds to 5% fluctuation in the wave front. Hence a zigzagged shock wave prop-
agates rightward in the initial state. Fig. 7 shows the stage 100 and 200 time steps from the initial. The
contours denote the distribution of specific entropy, s, on the x–y plane. No spatial dependence is seen in
the z-direction. Since the solution is obtained without the additional viscosity, horizontal stripes are seen in
the entropy distribution.

Fig. 8 is the same as Fig. 7 but for the solution obtained with the additional viscosity. The odd–even dif-
ference, Dyq � qi;65;64 � qi;64;64, is erased out in Fig. 8. The density difference is at most Dq ¼ 3:0� 10�4

between two cells adjacent in the y-direction at this stage. This implies that the odd–even difference decreases
by 6.1% per time step. In other words, it takes 37 time steps for the difference to decrease by a factor of 10.

The initial magnetic field is parallel to the x-axis ðBx ¼ 25Þ in the second problem. The initial density, pres-
sure, and velocity are the same as those in the first problem. Fig. 9 denotes the solution without the additional
viscosity.

The odd–even difference neither grows nor dies out when the additional viscosity is not supplemented. The
magnetic field parallel to the flow has an appreciable effect on the odd–even decoupling but does not suppress
the odd–even difference. Note that the magnetic pressure is comparable to the gas pressure in the preshocked
flow.

The odd–even difference was erased out in the simulation with the additional viscosity. Figs. 10–12 denote
the odd–even differences in the solution with the additional numerical viscosity. The odd–even differences
diminish while streaming downwards.
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Fig. 5. The darkness denotes the additional numerical viscosity for spherical expansion, K� jkj. The upper panel denotes that for the
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Fig. 7. Quirk’s odd–even test problem solved without additional numerical viscosity. The curves denote the contours of s � log
P � c log q ¼ 0:0; 1:0; 1:05; 1:10, and 1.15 for the stages 100 (upper) and 200 (lower) time steps after the initial. The abscissa and ordinate
denote the cell number in the x- and y-directions, respectively.
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We assumed By , the magnetic field parallel to the shock front, in the third odd–even decoupling problem.
The initial state in the right hand side was taken to be
qi;j;k ¼ 1:0; ð54Þ
P i;j;k ¼ 0:6; ð55Þ
vx;i;j;k ¼ �5:0; ð56Þ
vy;i;j;k ¼ 0:0; ð57Þ
vz;i;j;k ¼ 0:0; ð58Þ
Bx;i;j;k ¼ 0:0; ð59Þ
By;i;j;k ¼ 25:0; ð60Þ
Bz;i;j;k ¼ 0:0; ð61Þ
while that in the left hand side was taken to be
qi;j;k ¼ 3:424; ð62Þ
P i;j;k ¼ 0:6; ð63Þ
vx;i;j;k ¼ �0:7523; ð64Þ
vy;i;j;k ¼ 0:0; ð65Þ
vz;i;j;k ¼ 0:0; ð66Þ
Bx;i;j;k ¼ 0:0; ð67Þ
By;i;j;k ¼ 13:30; ð68Þ
Bz;i;j;k ¼ 0:0: ð69Þ
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Fig. 8. The same as Fig. 7 but for the solution with the additional numerical viscosity.
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Fig. 9. The same as Fig. 7 but for the initial condition with Bx. The upper panel denotes the stage 200 steps after the initial while the lower
does that 220 steps after the initial.
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Fig. 10. The evolution of odd–even difference in the second problem when the additional numerical viscosity is supplemented. The lines
denote the density difference in the cells adjacent in the y-direction, i.e., Dyq � qi;65;64 � qi;64;64. The thin solid curves denote the stages of 20,
40, 60, and 80 time steps from the initial while the dashed curves do the initial stage. The thick solid curve does the stage 100 time steps
from the initial. The abscissa denotes the x-coordinate in the cell number.
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Fig. 11. The same as Fig. 10 but for the odd–even difference in pressure, Dyp.
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Fig. 12. The same as Fig. 10 but for the odd–even difference in the x-component of velocity, Dyvx.
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This jump is arranged to propagate rightward at the phase velocity of 1.0. A small perturbation is added on
the density, velocity, and pressure but not on the magnetic field. The odd–even decoupling was not observed in
the third problem even in the simulation without the additional numerical viscosity. This is because the Alfvén
wave propagates with an appreciable phase velocity in the y-direction. The Alfvén wave dissipates the differ-
ence in vx through numerical diffusion.
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We made the fourth odd–even problem from the third one by exchanging By and Bz. The odd–even decou-
pling grows in the fourth problem as shown in Fig. 13. The z-component of the magnetic field has no contri-
bution to the diffusion in the y-direction. This carbuncle instability is also removed by the additional
numerical viscosity.

From comparison of the second, third and fourth problems we have learned that the odd–even decoupling
can be suppressed by the magnetic field but depending on the direction. When the perturbation is parallel to
the magnetic field, it can be suppressed.

In order to understand the angle dependence, we examined the fifth problem in which the magnetic field is
perpendicular to the flow and inclined with respect to the y- and z-axes, i.e., B / ð0; 1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p
Þ in the Carte-

sian coordinates. The initial density, velocity, and pressure are the same as those of the third and fourth prob-
lems. Also the initial amplitude of the magnetic field is the same as that of the third and fourth problems. The
odd–even decoupling does not grow in the fifth problem. This implies that the odd–even decoupling is sup-
pressed if the magnetic field has an appreciable component in the direction parallel to the perturbation. In
other words, the odd–even decoupling and hence carbuncle instability will grow when the shock front is par-
allel to a coordinate and the magnetic field is parallel to another coordinate. Then the wave vector of unstable
perturbation will be parallel to the rest coordinate.

Inspired by Kitamura et al. [4] we have added several models in which the shock front is stationary. The
sixth model was constructed from the second model by subtracting Dvx ¼ 1:0 in the x-component of the veloc-
ity, i.e., vx ¼ �6:0 and �1:7523 in the left and right hand sides, respectively. The initial shock front was placed
between x ¼ 119 and 120. The initial density, and pressure, and magnetic field are the same as those in the
second model.

The odd–even difference grows with the time in the sixth model when the Roe scheme with entropy fix is
applied. The odd–even difference is damped when the additional numerical viscosity is supplemented. Fig. 14
denotes the evolution of the density difference between the cells adjacent in the y-direction in the computation
with the additional numerical viscosity. The odd–even difference diminishes while streaming downward.
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Fig. 13. The same as Fig. 7 but for the initial condition with Bz. The curves denote the contours of s ¼ 1.0 and from 3.2 to 4.1 with 0.1
step. The upper and lower panels denote the stages of 100 and 200 time steps from the initial, respectively.
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Figs. 15 and 16 are the same as Fig. 14 but for the odd–even differences in the pressure and x-component of
the velocity. These differences diminish while streaming downward. No velocity perturbation is induced in the
y-direction while the pressure varies along the y-axis. This is because the pressure perturbation has the wave-
length only twice as long as the cell width. The velocity perturbation cannot be expressed since it should have a
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Fig. 14. The evolution of the odd–even difference when the shock front is stationary. The lines denote the density difference between the
cells adjacent in the y-direction. The dashed line denotes that at the initial stage while the thick solid line does that at the stage time 100
steps from the initial. The thin solid lines denote those at the stages 20, 40, 60, and 80 time steps from the initial.

40 50 60 70 80

x (i)

-0.02

-0.01

0.00

0.01

Δp

Fig. 15. The same as Fig. 14 but for the odd–even difference in the pressure.
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Fig. 16. The same as Fig. 14 but for the odd–even difference in the x-component of the velocity.
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finite value on the cell surface but not at the cell center. In other words, a sound wave, a physical restoring pro-
cess, cannot be expressed at such a short wave length. This may be related to a cause of the carbuncle instability.

Fig. 17 shows the density evolution in the above model. The curves denote the density profile as a function
of x at fixed y and z. The density jump spreads over several cells after a few time steps. At the same time, sound
wave and entropy wave are emitted from the jump to travel in the downstream.

Figs. 18 and 19 are the same as Fig. 14 but for the pressure ðpÞ and velocity ðvxÞ, respectively. Only the
sound wave is seen in the pressure and velocity distributions.

We stopped the computation before the waves reach the boundary in the downstream since the density and
velocity seemed to converge near the shock front. If we had continued the computation, the waves would be
reflected between the boundary and shock front. The wave reflection would oscillate the shock front. The
oscillation is the 1D carbuncle instability discussed by Kitamura et al. [4].

The reflection of the wave depends on the downstream boundary condition and also on the choice of the
numerical scheme. The initial emission of the waves from the jump depends on the initial position of the shock
front relative the cell boundary. As shown by Kitamura et al. [4], the condition for the 1D carbuncle instability
is complex and beyond the scope of this study. It is further more difficult to track the shock front correctly in
2D and 3D stationary flows.

By computing several stationary shock flows, we have confirmed that the odd–even difference diminishes
when our additional numerical viscosity is supplemented. The examples include the case in which the initial
shock front is located inside a cell. Our numerical viscosity erases out the odd–even difference, while it may
not care the 1D carbuncle instability.
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Fig. 17. The density evolution in a stationary shock problem. The dashed line denotes the initial state, while the solid curves denote those
at the stages 100, 200, 300, 400, and 500 time steps from the initial.
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It should be noted that the Roe flux with entropy fix (Roe-Efix) has passed the 1D carbuncle test of Kitam-
ura et al. [4]. Since entropy fix is commonly employed in the practical use, the 1D carbuncle instability is not
likely to be serious to the computation obtained with the Roe flux.

4. Application to type II supernova

We applied our scheme to three-dimensional MHD simulation of type II supernova. Type II supernova is
explosion taking place at the final evolutionary stage of a massive star. Just before the explosion, the central
iron core of a massive star exceeds the critical mass and starts to collapse dynamically. Our numerical simu-
lation deals with the collapse of the iron core and subsequent supernova explosion.

Our initial data are constructed based on the 15 M� model of Woosley et al. [17]. The density is increased
10% artificially to initiate the dynamical collapse. The initial magnetic field is assumed to be
Br

Bh

Bu

0
B@

1
CA ¼ 2B0

3
ðrb � raÞ

cos h

sin h

0

0
B@

1
CA ð70Þ
in the central core of r 6 ra,
Br

Bh

Bu

0
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1
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12
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r3

� �
cos h
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r3

� �
sin h

0

2
6664

3
7775; ð71Þ
in the middle region of ra 6 r 6 rb, and
Br

Bh

Bu

0
B@

1
CA ¼ B0

12
ðr4

b � r4
aÞ

cos h

sin h

0

0
B@

1
CA ð72Þ
in the outer region of rb 6 r, in the spherical coordinates. The electric current density is uniform in the spher-
ical shell of ra 6 r < rb in this magnetic configuration.

The initial rotation velocity is expressed to be
v0 ¼ XðrÞðeX � rÞ; ð73Þ

where
XðrÞ ¼ X0a2

r2 þ a2
; ð74Þ
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eX ¼
sin hX

0

cos hX

0
B@

1
CA; ð75Þ
and
r ¼
x

y

z

0
B@

1
CA; ð76Þ
in the Cartesian coordinates. The rotation axis is inclined by hX from the z-axis, i.e., from the magnetic axis.
We set hX ¼ p=3 in the following example.

We used the equation of state of Takahara and Sato [16] in which the pressure is expressed as
P ¼ P c þ P t; ð77Þ

P t ¼
qet

ct � 1
; ð78Þ

P c ¼ Ki
q
qi

� �ci

: ð79Þ
The index, ct, is taken to be 1.3. The coefficients, Ki and ci, are piecewise constant in the interval of
qi�1 < q 6 qi. The values are given in Table 1. The internal energy per unit mass is expressed as
e ¼ et þ
Z q

0

P c

q2
dq: ð80Þ
1
parameters for P c [see Eq. (79)]

qi Ki ci

4:0� 109 1:767� 1027 4/3
1:0� 1012 2:446� 1030 1.31
2:8� 1014 4:481� 1033 4/3
1:0� 1015 1:080� 1035 2.5

. Numerical simulation of a prompt shock wave from a proto neutron star. Painted is the surface of constant radial velocity,
4 km s�1. Though the shock wave should be almost spherical, it suffers from the carbuncle instability.



Fig. 21. The same as Fig. 20 but for the simulation with the additional numerical viscosity. The carbuncle instability is removed perfectly.
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Fig. 22. The amount of additional numerical viscosity is denoted by grayness for the stage shown in Fig. 21. It is measured on the plane of
x = 1.65 km in unit of velocity as described in the text. The upper panel denotes the additional numerical viscosity for the Alfvén wave
propagating in the increasing x while the lower panel does that in the increasing z.
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Fig. 23. The additional numerical viscosity, K� j k j, is shown as a function of x for the stage shown in Fig. 22.
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Fig. 24. The grayness denotes the rotation velocity, vu, around the initial rotation axis at the stages of t ¼ 196:77 ms (upper) and 202.67
ms (lower). The arrows denote the velocity within the plane. This solution is obtained with the additional numerical viscosity to the Roe
scheme.
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The MHD equations are solved on the nested grids consisting of eight concentric cubic grids. Each cubic grid
contains 643 cells of which size differs by factor two each. The coarsest grid covers the volume of (3383 km)3

with the resolution of Dx ¼ 52:8 km while the finest grid covers the central volume of 26.4 km3 with
Dx ¼ 413 m. The gravity was obtained by solving the Poisson equation with the multi grid iteration [18].

Fig. 20 shows the stage of t ¼ 190:54 ms by a bird’s eye view. The tubes denote the magnetic field lines.
Painted is the isovelocity surface of vr ¼ 1:0� 104 km s�1 and corresponds to the expanding wave called
the prompt shock. The prompt shock is formed by the bounce of collapsing stellar core, i.e., birth of a proto
neutron star ðt ¼ 189:83 msÞ. The radius of the proto neutron star is about 10 km. The prompt shock wave
emanates from the surface of the proto neutron star and its radius increases from 21.5 km to 73.5 km by
the stage of t ¼ 190:38 ms. Though the shock wave should be nearly spherical, it has bumps on the planes
of x ¼ 0, y ¼ 0 and z ¼ 0. They are due to the carbuncle instability since they are along the cell boundaries.
At this stage the plasma beta is much higher than unity and the magnetic force is weaker than the gas pressure
force.

Fig. 21 is the same as Fig. 20 but for the simulation with the additional viscosity. The carbuncle instability
is removed completely and the shock front is fairly smooth.

Fig. 22 shows the amount of additional numerical viscosity for the Alfén waves, i.e., KðmÞ� j kðmÞ j. It is eval-
uated on the plane of x = 1.65 km for the Alfvén wave propagating in the increasing x-direction (upper panel)
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Fig. 25. The same as Fig. 24 but for the solution obtained with the HLLE scheme. The upper and lower panels denote the stages of
t ¼ 196:75 ms and 202.87 ms, respectively.
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and that in the increasing z-direction (lower panel). The additional numerical viscosity is small except near the
prompt shock and near the proto neutron star. See also Fig. 23 for the absolute value of the additional numer-
ical viscosity.

Next we compare our scheme with the HLLE scheme [5,6] using this example. The HLLE scheme also
solves the prompt shock without suffering from the carbuncle instability. The solution obtained with the
HLLE scheme is smeared by numerical diffusion. In other words, the magnetic Reynolds number is decreased
artificially. Fig. 24 shows the rotation velocity distribution in the solution obtained with our scheme while
Fig. 25 does that with the HLLE scheme. The darkness denotes the rotation velocity on the plane of x ¼
413 m. The arrows denote the velocity within the plane. The upper panels denote the stage of t ¼ 196:8 ms
while the lower ones do that of t ¼ 202:8 ms. The initial rotation axis lies in the plane of x ¼ 0 and is inclined
with 60	 from the z-axis. The rotation of proto neutron star, of which radius is about 10 km, is appreciably
decreased in the solution obtained with HLLE. The maximum angular velocity is kept at the level of
X ’ 2� 103 Hz in the simulation obtained with our scheme while it decreases in the HLLE simulation.
The region of fast rotation is smaller in the HLLE simulation. This slow down is due to numerical diffusion
of the HLLE scheme. The artificial slow down leads to serious loss of rotation energy in a supernova
simulation.
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Fig. 26. Distribution of toroidal magnetic field generated by rotation of proto neutron star. The grayness denotes the toroidal component
of the magnetic field ðBuÞ around the initial rotation axis on the plane of x ¼ 206 m. The arrows denote the magnetic field on the plane.
The rotation velocities at the corresponding stages are shown in Fig. 24.
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Fig. 27. The same as Fig. 26 but for the solution obtained with HLLE scheme. The rotation velocities at the corresponding stages are
shown in Fig. 25.
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Magnetic field is also smeared by numerical diffusion in the solution obtained with the HLLE scheme. Fig.
26 denotes the toroidal magnetic field ðBuÞ distribution obtained with our scheme, while Fig. 27 does that
obtained with the HLLE scheme. The toroidal magnetic field is small inside the proto neutron star in the solu-
tion obtained with our scheme while it is large in the solution obtained with the HLLE scheme. The difference
comes from the large numerical viscosity of the HLLE scheme.

Fig. 28 denotes the magnetohydrodynamical jets launched from the proto neutron star. These jets are dri-
ven by the toroidal magnetic fields in the simulation with our scheme. These MHD jets are not launched in the
simulation with the HLLE scheme. As shown here, too large numerical diffusion can be serious in 3D MHD
simulations since spatial resolution is rather limited.

5. Discussion

As shown in the previous sections, our scheme has succeeded in solving the spherical expansion problem,
Quirk’s odd–even test, and MHD type II supernova explosion. The former two tests prove that the additional
numerical viscosity can save the carbuncle instability and odd–even decoupling. The latter test proves that our
scheme can be applied to an MHD flow associated with strong shock waves. It also demonstrates that the
numerical viscosity of our scheme is appreciably smaller than that of HLLE.



Fig. 28. Magnetohydrodynamical jets launched from rotating magnetized proto neutron star. Each panel denotes the stage of
t ¼ 228:99 ms by a bird’s eye view. The upper and lower panels denote the central volumes of (104 km)3, and (1665 km)3, respectively. The
purple curves denote the magnetic field lines while the color denotes the radial velocity, vr, in the unit of 103 km s�1. The color scale is
attached to the lower panel.
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Our scheme has several advantages among the schemes free from the carbuncle instabilities. First it can be
applied to magnetohydrodynamical equations while the other schemes except HLLE have not yet been
applied. It can be applied to any hyperbolic equations. Second the numerical viscosity is much smaller than
that of HLLE and as small as the Roe-type scheme except near the shock fronts. Third the shock indicator has
the dimension of velocity as well as the additional numerical viscosity. Thus, the functional form of the numer-
ical viscosity is simple in our scheme. Another advantage is implication of the mechanism for the carbuncle
instability. Our scheme implies that the carbuncle instability is due to the convergence of waves at the shock
fronts.

We suppose that the carbuncle instability is induced by the following mechanism working near the shock
front. First a shock wave tends to confine any perturbation near the front through nonlinear interactions of
waves. Remember that both sides are upstream from the shock front. Since information travels from upstream
to downstream, no perturbation escapes in the direction normal to the shock front. Thus the perturbation
remains in a small region near the shock front. Second the perturbation cannot travel in the direction tangen-
tial to the shock front if its wavelength is as small as twice the cell width. As demonstrated by the odd–even
test, a velocity perturbation decouples from density and pressure perturbations at such a short wavelength. No
velocity perturbation tangential to the shock front is induced in the sample problem shown in Fig. 7.

In our scheme a perturbation near the shock front is dispersed in the tangential direction through the arti-
ficial viscosity. The viscosity is proportional to the convergence rate of the characteristics, Dk, for the Alfvén
and slow waves, while it is larger for the entropy wave. We have tried the same numerical viscosity for the
entropy wave but failed. Our experience means that a larger numerical viscosity is required for the entropy
wave to suppress the carbuncle instability. We suppose that the Alfvén and slow waves are amplified through
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a passive nonlinear coupling, while the entropy wave is amplified through a stronger nonlinear coupling, i.e.,
entropy generation at the shock front.

Though our scheme has succeeded in suppressing the carbuncle instability in a problem of our interest, its
applicability has been explored a little. It is partly because the mechanism of the carbuncle instability has not
been clearly understood. Exploration of the applicability has no alternative but application to various test
problems. For robustness we need to examine various cell widths, since the carbuncle instability is sensitive
to them. Thus the approach cannot help being phenomenological. In order to explore the robustness, we need
to identify the mechanism. We hope that our approach based on the characteristics contributes to full under-
standing of the carbuncle instability.

Numerical examples are performed in part on SR11000 at the Institute of Media and Information Technol-
ogy of Chiba University. This work is financially supported in part by the Grant-in-Aid for Priority Area by
the Ministry of Education, Culture, Sports, Science and Technology (17030002).
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